Continuous measurement of air–water gas exchange by underwater eddy covariance

نویسنده

  • Peter Berg
چکیده

Exchange of gases, such as O2, CO2, and CH4, over the air–water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique – originally developed for benthic O2 flux measurements – right below the air– water interface (∼ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2–temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air–water interface were derived, and gas exchange coefficients were calculated from the former. Proofof-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air–water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air–water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds – two main drivers of lotic gas exchange – but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature–density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent mixing. This effect is unaccounted for in widely used empirical correlations for gas exchange coefficients and is another source of uncertainty in gas exchange estimates. The aquatic eddy covariance technique allows studies of air–water gas exchange processes and their controls at an unparalleled level of detail. A finding related to the new approach is that heat fluxes at the air–water interface can, contrary to those typically found in the benthic environment, be substantial and require correction of O2 sensor readings using high-speed parallel temperature measurements. Fast-responding O2 sensors are inherently sensitive to temperature changes, and if this correction is omitted, temperature fluctuations associated with the turbulent heat flux will mistakenly be recorded as O2 fluctuations and bias the O2 eddy flux calculation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Test of Density and Energy-Balance Corrections on Carbon Dioxide Flux as Measured Using Open-Path Eddy Covariance

rounding these most fundamental of measurements. In this paper, we examine the performance of open-path Eddy covariance is the most direct technique for measuring water, eddy covariance, a flux measurement technique that was C, and energy fluxes above crops and managed ecosystems. When first used in the 1970s (e.g., Desjardins and Lemon, using open-path gas analyzers, corrections for air densit...

متن کامل

Air-sea exchange of O2 and CO2 Processes controlling the transfer efficiency

Andersson, A. 2017. Air-sea exchange of O2 and CO2. Processes controlling the transfer efficiency. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1471. 42 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 9789155498061. World oceans cover more than 70% of the earth surface and constitutes a major sink of atmospheric CO2. Two of the most impor...

متن کامل

Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow

Methane fluxes measured in a eutrophic peat meadow in the Netherlands dominated by vascular plants showed high spatial and temporal variability. To elucidate this variability as well as the underlying processes, various measurement techniques were used: soil gradients of methane concentrations, the chamber method, and the eddy covariance technique. Additionally, soil temperature at multiple dep...

متن کامل

Turbulent Events and Gas-Side Mass Transfer Coefficients in a Wavy Air-Water Stratified Flow

Turbulence structure on the gas side of a wavy stratified flow was experimentally investigated in a near horizontal 18.7 cm (H) 10 cm (W) 5.5m (L) rectangular duct.By applying the Variable Interval Time Averaging (VITA) technique to the hot wire anemometer measurements frequency of occurrence of turbulent events were detected near the air-water interface. Experimental results showed that fr...

متن کامل

Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest.

Two methods, eddy covariance and chamber-based measurements, were employed to measure the net ecosystem CO(2) exchange in a mature temperate mixed forest in 2003. The eddy covariance system was used as a reference, which was compared with the chamber-based method. Based on chamber fluxes, the ecosystem had a gross primary production of 1490 g C m(-2) year(-1), 90% of which was released as efflu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017